Mixed Sentiment Upon Globally Praised Concept of One Health: Gauging Responses using Twitter
نویسندگان
چکیده
The concept of One Health, which has been prioritized and integrated into national strategies in developed countries as part their sustainable development goals (SDGs), is often overlooked developing countries, leading to unpreparedness for outbreaks. To understand global responses we evaluated Twitter data, a microblogging social media platform with over 50 million users worldwide. Our analysis revealed that the top most tweeted words related Health were "onthealth", "fordnation", "celliottability", showed an association Canada-based institutions individuals, indicating Canada's role implementing strategies. We also found was linked positive, negative, neutral sentiments on Twitter. Overall, our results demonstrate triggers sentiment-polarized responses, provides valuable tool gauging public sentiment considering it shaping norms society.
منابع مشابه
2016 Olympic Games on Twitter: Sentiment Analysis of Sports Fans Tweets using Big Data Framework
Big data analytics is one of the most important subjects in computer science. Today, due to the increasing expansion of Web technology, a large amount of data is available to researchers. Extracting information from these data is one of the requirements for many organizations and business centers. In recent years, the massive amount of Twitter's social networking data has become a platform for ...
متن کاملTwitter Based System: Using Twitter for Disambiguating Sentiment Ambiguous Adjectives
In this paper, we describe our system which participated in the SemEval 2010 task of disambiguating sentiment ambiguous adjectives for Chinese. Our system uses text messages from Twitter, a popular microblogging platform, for building a dataset of emotional texts. Using the built dataset, the system classifies the meaning of adjectives into positive or negative sentiment polarity according to t...
متن کاملEnhanced Twitter Sentiment Classification Using Contextual Information
The rise in popularity and ubiquity of Twitter has made sentiment analysis of tweets an important and well-covered area of research. However, the 140 character limit imposed on tweets makes it hard to use standard linguistic methods for sentiment classification. On the other hand, what tweets lack in structure they make up with sheer volume and rich metadata. This metadata includes geolocation,...
متن کاملTwitter Sentiment Polarity Classification using Barrier Features
English. A crucial point for the applicability of sentiment analysis over Twitter is represented by the degree of manual intervention necessary to adapt the approach to the considered domain. In this work we propose a new sentiment polarity classifier exploiting barrier features, originally introduced for the classification of textual data. Empirical tests on SemEval2014 competition data sets s...
متن کاملStock Prediction Using Twitter Sentiment Analysis
In this paper, we apply sentiment analysis and machine learning principles to find the correlation between ”public sentiment” and ”market sentiment”. We use twitter data to predict public mood and use the predicted mood and previous days’ DJIA values to predict the stock market movements. In order to test our results, we propose a new cross validation method for financial data and obtain 75.56%...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: E3S web of conferences
سال: 2023
ISSN: ['2555-0403', '2267-1242']
DOI: https://doi.org/10.1051/e3sconf/202338802008